
Implementation of Secure Access
controlled File Encryption (SAFE) system

Farrukh Shahzad
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia

Email: farrukhshahzad@kfupm.edu.sa

I. INTRODUCTION

Cloud computing has evolved as a popular and universal paradigm for service oriented computing where

computing infrastructure and solutions are delivered as a service. The cloud has revolutionized the way computing

infrastructure is abstracted and used. Some of the features which makes cloud computing desirable includes;

elasticity (the ability to scale on-demand), pay-per-use (which means no/low upfront investment and low time to

market) and transfer of risk (from the small application developers to the large service providers). Therefore novel

applications/ideas can be tried with minimal risks, an approach that was not feasible in the pre-cloud era. This has

resulted in large numbers of applications—of various types, sizes, and requirements—being deployed across the

various cloud service providers. Cloud computing not only realizes the dream of computing as a utility but provides

opportunity for its adoption and growth. As with any new technology, there are challenges and obstacles. Data

confidentiality and security is one of the main obstacles in adopting the cloud at the enterprise level.

The security concerns motivate the authors of [1] to propose a system, called FADE that can enforce access

control and assured deletion of outsourced data on the cloud in a fine-grained manner. Access control guaranties that

only authorized users can access/download the data on the cloud and assured deletion means that data is

permanently inaccessible even if the storage provider (or their sub-contractors) keeps the file upon request of

deletion. This work is an extension or simplification of FADE [1] to achieve more practical deployment with less

overhead. The Secure Access controlled File Encryption (SAFE) system is an overlay which works seamlessly over

the existing cloud storage services without any changes on the cloud side. Furthermore, the implementation only

requires basic data access API functions like put (upload) and get (download).

In SAFE, a file is encrypted with a data key by the owner of the file, using the SAFE client. The data key is

further encrypted with a secret key which is in turn is encrypted with a control key, based on the access control

policy selected by the owner, with the help of a separate key server.

Our contributions are summarized below:

 The design of Secure Access controlled File Encryption (SAFE) system to achieve policy-based access

control and assured deletion.

 The development of generic Java implementation to provide encryption/decryption and file upload/

download operations to/from any storage system.

 Implementation of complete generic SAFE client and key server applications which currently support

Amazon S3 and dropbox storage services.

II. SAFE DESIGN

The SAFE overview is shown below in figure 1.

Figure 1: SAFE Overview

A. Cryptographic Keys

SAFE uses three types of cryptographic keys to protect data files stored on the cloud.

 Data key. A data key is a random secret that is generated by a SAFE client. It is used for encrypting or

decrypting data files via symmetric (AES) key encryption.

 Secret key. Similar to the data key, a secret key is generated by a SAFE client. It is used for encrypting

or decrypting the data key via symmetric (AES) key encryption.

 Policy key. This key is associated with a particular policy. It is represented by a public-private key

pair, which is maintained by the key server. It is used to encrypt/decrypt the secret key of the file via

RSA. To ensure file deletion (inaccessibility), the corresponding policy can be revoked.

Therefore, to successfully decrypt an encrypted file stored on the cloud, the correct combination of data key,

secret key and policy key needs to be known; otherwise it will be computationally infeasible to access a SAFE

protected file.

B. SAFE Operations

Let F represent the file which needs to be stored securely with access policy P. Each policy corresponds to unique

pair of public Ppub and private Pprv keys which is generated and maintained by the key server. Assume that the

encryption and decryption function is represented by eK(F) and dK(F) respectively, where K is the key used for

encrypting data/file F. Similarly ePpub(S) and dPprv(S) represent the encryption of data S with public key Ppub and

decryption with private key, Pprv, respectively.

1) File Upload

The file upload function is shown in Fig. 2. The client first requests the public key Ppub of policy P from the key

server. Then the client generates two random keys K and S, and sends P, eS(K) , ePpub(S) (as metadata) and eK(F) i.e.

the encrypted file to the cloud. The client should discard K and S . There will be two objects on the cloud: One the

encrypted client’s file and the other the corresponding metadata text file containing policy and related keys

(encrypted).

Figure 2: The File upload operation

2) File Downlaod

Fig. 3 show the file download function. The client fetches the metadata file to get P, eS(K) , ePpub(S) from the

storage system. Then the client sends ePpub(S) to the key server for decryption. The key server decrypts and returns

S = dPprv(ePpub(S)) to the client. The client can now decrypt eS(K) to get K. The client now fetches the actual

encrypted file eK(F) and decrypt with K to get the original file F.

Figure 3: The File download operation

III. IMPLEMENTATION

Secure Access controlled File Encryption (SAFE) is a prototype implementation of file upload and download

employing AES and RSA cryptography based on FADE framework as presented in the previous section. The SAFE

is implemented purely in Java. All the libraries used are third party or built in Java libraries including the following:

 javax.swing.* for GUI

 com.amazonaws.* for amazon S3 APIs

 com.dropbox .* for Dropbox APIs

 org.apache.log4j.* for interactive on-screen and file logging

 javax.crypto and javax.Security for cryptographical operations like AES/RSA encryption/decryption, Key

generation, etc.

 Many other built-in libraries for File I/O, SSL socket programming. There are also other external Java libraries

which are used by Amazon and Dropbox APIs.

The Java package edu.kfupm.ccse.fade is created with following files and resources:

DataSourceInterface.java The interface class implemented by FileSafe.java

FileSafe.java This super class provides all needed high level functions to support

SAFE operations for file storage like upload/download.

S3Safe.java This class provides all needed high level functions to support SAFE

operations for Amazon S3 cloud storage like object (encrypted files and

corresponding metadata) upload/download.

DropboxSafe.java This class provides all needed high level functions to support SAFE

operations for Dropbox cloud storage like object (encrypted files and

corresponding metadata) upload/download.

Cryptography.java The class which provides all high-level cryptographical operations like

AES/RSA encryption/decryption, Key generation, etc.

Safe.java The GUI interface

SafeMain.java The main SAFE Application

KeyServer.java The main Key Server console application

KeyServerThread.java The Key server process thread to support multiple clients and provide

all policy operations like addition, revocation, policy’s public/private

key generation, decryption using policy private key and user

authentication.

ClientStatus.java.java The client object/class used by Key Server application.

DBAccess.java.java The database access utility class used by Key Server application.

EchoClient.java The test program to test Key Server socket connectivity

SwingLogAppender.java To allow interactive logging

HelpBrowser.java To access web pages within the application

PatchedHTMLEditorKit.java Support files

SimpleLinkListener.java Support files

KeyServer.bat The batch file to execute the Key Manager

KeyServerCredentials.properties User needs to provide Key server IP/port, and authentication details

KeyServerDBCredentials.properties user needs to provide DB host, username, and password

AwsCredentials.properties User needs to provide Amazon S3 keys to access his/her account by

SAFE application.

DropboxCredentials.properties User needs to provide Dropbox keys to access his/her account by SAFE

application.

Logging_gui.properties To setup interactive logging

Changelog.txt A text file to provide some info about the application. This file is

accessed by the application to show ‘About’ content.

Several image files (image folder) used by the GUI

A. Requirements:

To run the application, user needs all of the above mentioned libraries (available as freeware). User also needs to

sign up for Amazon S3 or/and Dropbox cloud storage service (free for some GB of usage). The application is built

on Java version 1.7 so JRE ver 1.7 is also required to run the application.

B. Safe Client

The SAFE client is GUI based application developed Java Swing framework. It implements the basic file

upload/download (including corresponding metadata) to the cloud provider using FADE model as described in the

paper [1]. The application connects to the Key server at initialization through SSL TCP/IP socket connection (need

Key server IP address: port). User need to login to the key server. There are two types of account:

User account: This user can perform basic operations like uploading or downloading to/from cloud with policies

he/she is authorized to use.

Admin Account: This user can perform admin operations like adding a new policy, revoking a policy or adding a

user to a policy, apart from basic user level operations

The SAFE client is a menu driven application with three menus:

 Cloud Options to Upload, download, get the object list in the cloud and to exit the application.

 Key Server Options to connect or disconnect to/from Key server. Add policy and revoke policy is

only available for admin user.

 Help The help and about option.

The main screen is spilt horizontally into left and right panes. The right pane is used for interactive logging for

user to see underlying processing/information during application execution. The left pane show the logo on top

and it consists of three tabs for home, upload and download. The upload tab shows the machine’s file system for

user to select the file he/she wants to upload to the cloud. The download tab show the list of existing objects(files)

on the cloud for user to select the object he/she wants to download to his/her machine. The application will

perform all the necessary encryption, decryption, metafile generation and any other related task transparently

(with the help of Key server).

C. Metafile

Here is an example of a metadata file generated after an upload to the cloud:

SAFE0001

6B6C379A35A8A17CF005F8CE850D0F45A24C86747DB1D83E167A46ADBBF8CF03

4A31EAF4FFC824ADD69D327D551705F2CB164D23AC47D0B85E47D1BCFEBA342F7C886C3292DBDB590348FC900F210D5

6DEC21E1177A0CFC17138ACB41193AC9DEECCC74D0B72A1599026A3FD1A0BEBA1E08DA716CE7C58BA77BD79E42E1E85

033EA1F1A2B785F939F47BE421A9A2EA82005AFB81B50D628ABDA43AEFC989B788

This metafile is saved along with the encrypted file on the cloud with extension ‘.safe’.

First line is the policy name/Id(Pi). The second line is the file’s AES key (K) encrypted with the user generated

policy AES key (Si). The rest is the user generated Key (Si) encrypted with public key for policy Pi. Notice that K

and Si are generated every time user need to upload a file.

D. File Upload

Here is a sample log of file upload. Figure 4 shows the GUI for upload operation.

14:22:36 File will be uploaded from: C:\Users\Farrukh\Documents

14:22:36 Encrypting..

14:22:36 Uploading a new object to S3 from a file in to SAFE bucket

14:22:38 Uploading the corresponding metadata object to S3 in to SAFE bucket

14:22:39 Uploaded file: cover.docx Done.

14:22:39 Listing objects..

Figure 4: Upload operation

E. File Download

Here is a sample log of file download. Figure 5 shows the GUI for download operation.

2013-05-22 05:51:26 Downloading the object metadata.

2013-05-22 05:51:24 Downloading the object

2013-05-22 05:51:26 File Name: walterp-gridsim.pdf

2013-05-22 05:51:26 Content-Type: application/octet-stream

2013-05-22 05:51:27 Decrypting ..

2013-05-22 05:52:13 File will be saved to: C:\Users\Farrukh\Documents\walterp-

gridsimu.pdf

Figure 5: Download operation

F. Key Server

The Key server is a multithreaded console application written in Java. It uses the SSL TCP/IP socket to

communicate to the clients (SAFE application). It listens on a certain port for clients. Multiple clients can connect at

the same time. It can be run on any machine on the network as long as its IP address is known to client. It provides

following services on client request:

 Policy addition (admin account)

 Policy revocation (admin account)

 Policy’s public/private key generation

 Transmission of public key

 Decryption using policy private key.

 User authentication at connection initiation.

 Figure 6: The Key Server application

REFERENCES

[1] Yang Tang; Lee, P.P.C.; Lui, J.C.S.; Perlman, R., "Secure Overlay Cloud Storage with Access Control and Assured Deletion," Dependable

and Secure Computing, IEEE Transactions on , vol.9, no.6, pp.903,916, Nov.-Dec. 2012 doi: 10.1109/TDSC.2012.49.

[2] Amazon S3, http://aws.amazon.com/s3, 2010

[3] http://blog.fileburst.com/personal-cloud-storage-explained/

[4] R. Geambasu, T. Kohno, A. Levy, and H.M. Levy, “Vanish: Increasing Data Privacy with Self-Destructing Data,” Proc. 18th Conf. USENIX

Security Symp, Aug. 2009.

[5] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-Based Encryption for Fine-Grained Access Control of Encrypted Data,” Proc. 13th

ACM Conf. Computer and Comm. Security (CCS), 2006.

[6] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy Attribute-Based Encryption,” Proc. IEEE Symp. Security and Privacy, May

2006.

[7] R. Perlman, “File System Design with Assured Delete,” Proc. Network and Distributed System Security Symp. ISOC (NDSS), 2007.

[8] http://www.rsa.com/rsalabs/node.asp?id=2339

[9] http://www.cs.tau.ac.il/~bchor/Shamir.html

[10] http://ansrlab.cse.cuhk.edu.hk/software/fade

[11] Dropbox, http://www.dropbox.com, 2010.

[12] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy Attribute-Based Encryption,” Proc. IEEE Symp. Security and Privacy, May

2006.

[13] http://ansrlab.cse.cuhk.edu.hk/software/fade/

